
fmslib.com

GPU Acceleration of Matrix Algebra

Dr. Ronald C. Young

Multipath Corporation

fmslib.com

Machine Year Flops

DEC VAX 1978 97,000

FPS 164 1982 11,000,000

FPS 164-MAX 1985 341,000,000

X86 core 2011 10,000,000,000

NVIDIA GPUs 2011 2,200,000,000,000

(2.2 Tflops)

22 Million times faster than a VAX 11/780

FMS Performance History

DEC VAX 11/780

NVIDIA

M2070 HP SL390 4U

• FMS got its start in 1978 as a Floating Point Systems (FPS) matrix algebra package.

• Floating Point Systems made array processors which attached to VAX computers to provide

improved floating point performance in hardware. At that time most commercial computers

performed floating point operations is software (except for CRAY and CDC).

• FMS achieved near 100% efficiency by implementing a hardware multiply-accumulate

instruction for dot products.

• In 1985 the first 64-bit adder and multiplier chips became available. Exploiting the broadcast

interconnect properties of matrix algebra, Floating Point Systems produced the Matrix

Algebra Accelerators which provided up to 30 additional multiply-accumulate pipelines for

FMS applications.

• Today (2011) a typical core in an Intel processor performs at about 10 Gflops (2.5 GHz x 4

Flops/cycle). That will double with the AVX cores which perform 8 Flops/cycle.

• A SL390 having 8 NVIDIA Fermi GPU’s and requiring ½ of a 4U cabinet achieves 2.2

Tflops. A cabinet with 20 nodes would achieve 44 Tflops. That will increase with the next

generation GPU (Kepler).

• While new features have been added, the FMS application program interface has remained

the same. Applications written for the VAX/FPS system will run on a Intel/GPU system with

a recompile and linking to the current FMS libraries.

fmslib.com

1. Form [A] and {B}

Write [A], {B} out

2. FMS Solves

[A]{X} = {B}

Read {X} in

3. Process Solution {X}

Start

Converged?

FMS

Store

[A], {X},

{B}

Disk or

Memory

End

No

Yes

Your Application

FMS

FMS Application Program Interface

• FMS captures data is it is generated.

• Specify data by rows, columns, blocks,

finite elements or a call-back routine

you provide.

• Methods to assemble, factor, solve,

multiply.

• Methods to read results.

• Application part (grey) increases as N2.

• FMS part (blue) increases as N3.

• One of the main uses of FMS is for solving boundary value problems in production

applications.

• These applications generally involve 3 steps:

• Reading in the data and forming the matrix [A] and vector(s) {B}. FMS includes

utilities for specifying the matrix data by rows, columns, blocks, finite elements or

subroutines you provide. Note that if the problem exceeds memory when you solve

it, it is also exceeds memory when you form it. During this stage FMS captures the

data as it is being generated and stores it on disk or memory in a format that is most

efficient for the target machine.

• The second stage is to perform matrix algebra operations on the data. This step is

performed by FMS. Methods are included to assemble, factor, solve and multiply.

• In the third stage, the application reads the data back from FMS.

• If the problem is converged (the coefficients of [A] do not depend on the solution {X}) you

are done. Otherwise a new [A] and {X} are formed and the process is repeated.

• The computations performed by FMS is step 2 involve a large number of regularly ordered

floating point operations, which are ideally suited for a numerical coprocessor.

• For fully coupled problems, the time required for problem formation in Step 1 increases as

the square of the problem size while the time required for the FMS solution in Step 2

increases as the cube of the problem size.

fmslib.com

Time spent in matrix fill and FMS solve (% of job)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 250,000 500,000 750,000 1,000,000 1,250,000 1,500,000 1,750,000 2,000,000

Matrix Size

Fill Solve

Matrix fill increases as N2

Assume fill and solve

are equal at 50,000

FMS solve increases as N3

• As the problem size increases, the FMS part grows as the cube of the problem size while the

rest of the application grows linearly or as the square.

• If the FMS and application parts are equal at 50,000 (meaning that it takes 50,000 cycles to

generate each matrix element), the above curves show how the percentage of work changes

with problem size.

fmslib.com

GPUs Increase Performance and Reduce Cost

Workstation Example: Z800, 2 Processors(8-12 cores), 64GB, 3TB SAS 15K

 $-

 $25

 $50

 $75

 $100

 $125

 $150

 $175

 $200

 $225

0 100 200 300 400 500 600 700 800

C
o
st

/P
e
r
fo

r
m

a
n

c
e
 (

$
/G

fl
o
p

)

Performance (Gflops)

2 CPUs Only

Various processor options

2 CPUS + 2GPUs

GPU1 GPU2

• As a base configuration, start with a HP Z800 workstation having (2) processors, 64 GBytes

of memory and (5) 600 GByte SAS 15K disks.

• The system cost is about $200/Gflop of actual performance, based on HP’s WEB site.

• Some benefit is achieved by processor upgrades, reducing the cost to $125/Gflop and

extending performance to 130 Gflops

• Each NVIDIA C2050 provides in excess of 300 Gflops at $8.33/Gflop.

• GPU chips have a high percentage of transistors devoted to adders and multipliers.

• FMS operates the CPUs and GPUs in parallel, extending performance and reducing

operational cost.

fmslib.com

DL980, 8 Processors(64-80 cores), 512GB, 7.2TB 10K SAS

 $-

 $50

 $100

 $150

 $200

 $250

 $300

0 500 1,000 1,500 2,000 2,500 3,000

C
o
st

/P
e
r
fo

r
m

a
n

c
e
 (

$
/G

fl
o
p

)

Performance (Gflops)

8 CPUs Only

Various processor O\options

8 CPUs + 8 GPUs

GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 GPU8

8 CPUs + 2 GPUs

• As a base configuration start with a DL980 having 8 processors, 512GBytes of memory and

(8) 900GByte 10K SAS disks.

• Depending on processor model, the cost/performance is between $180 and $225/Gflop.

• The maximum performance is 575 Gflops.

• (2) NVIDIA M2050 GPUs can be installed directly in the DL980, improving the

cost/performance and extending the performance beyond 1 Tflop.

• (8) GPUs can be attached to the (2) PCI slots using expansion cabinets, extending the

performance beyond 2.5 Tflops.

fmslib.com

Data Storage Options

• GPUs provide the capability of solving larger problems.

• Memory may be insufficient or too expensive for storing the increased data.

• Disks are 100 times less expensive than memory and can be easily expanded.

• The reuse of data in matrix algebra can match high speed computation with

slower disk transfer rates.

fmslib.com

Memory

• Memory cost ranges from $25 to

$130 per Gbyte

• Number of sockets per CPU is

limited (2 to 6)

• Maximum memory is limited

• Upgrade may require removing

old memory

• High density chips are expensive

(can exceed machine cost)

 $-

 $20

 $40

 $60

 $80

 $100

 $120

 $140

0 4 8 12 16 20 24 28 32

P
r
ic

e
 p

e
r

G
b

y
te

Memory Stick Size (Gbytes)

Z800

DL980

DL980

Low Volt

• The current cost for workstation or server memory is $25 to $130 per GByte, based on HP’s

WEB site.

• Memory based on denser chip technology offers more capacity, but at a higher price per unit

of storage.

• The maximum amount of memory which can be installed in a system is limited by the

number of memory sockets and the size of the memory sticks.

• To upgrade memory it may be necessary to remove the old memory before installing the new.

Therefore the benefit is only the difference in capacity of the memory sticks.

• Latest technology high density memory sticks sell at a premium, and can exceed the cost of a

system.

fmslib.com

Disk

• Disks are easily added

• Old disks can be used

• Capacity is practically unlimited

• Cost decreases with capacity

 $-

 $0.50

 $1.00

 $1.50

 $2.00

 $2.50

 $3.00

 $3.50

 $4.00

0 500 1,000 1,500 2,000 2,500 3,000

P
r
ic

e
 p

e
r

G
b

y
te

Drive Size (Gbytes)

DL980 SAS 15K

Z800 SATA 7.2K

DL980 SAS 10K

Z800 SAS 15K

Z800 SATA 10K

• The current cost of enterprise quality high performance 15K SAS disks is $1 to $4 per

Gigabyte (50 times less than memory).

• Slower SATA disks (7200) are about 30 cents (167 times less than memory)

• Disks can easily be added and the old disks still used. Most systems can be expanded to 100

direct attached storage (DAS) disks.

• Further capacity can be added with a storage area networks (SAN)

fmslib.com

Memory vs Disk

 $-

 $20

 $40

 $60

 $80

 $100

 $120

 $140

0 500 1,000 1,500 2,000 2,500 3,000

S
to

r
a

g
e
 C

o
st

 (
$

/G
b

y
te

)

Storage Size (Gbytes)

DL980 Memory

DL980 LV Memory

Z800 Memory

DL980 SAS15K

DL980 SAS 10K

Z800 SAS 15K

Z800 SATA 10K

Z800 SATA 7.2K

Memory

Disk

• Showing memory and disk together, it is obvious that disks provide a lower cost and more

expandable storage solution.

• While memory capacity has continued to grow, disk capacity and performance has also

grown.

• Most computers are not used to compute but to store and retrieve information, including the

Internet. These applications have contributed significantly to the interest in improved disk

technology.

• Over the last 30 years the ratio of memory price to disk price has remained about 100 to 1.

fmslib.com

Data Reuse: The Matrix Multiply

Real Complex

Ops to Multiply 2 8

Words to Transfer 2 4

Reuse per Word

Time to Multiply (2)/C (8)/C

Time to Transfer (16)/D (32)/D

Ratio D/8C ND/4C

Cij

=

C(N,N) A(N,N) B(N,N)

 Cij

M=Memory(Bytes)
M=(8 bytes/word)(5 matrices)N2

C=Compute Rate (Flops/Sec.)
D=Transfer Rate (Bytes/Sec.)

N

• For a matrix multiply of matrices having a dimension of N, each term requires a dot product

of length N between a row of the first matrix and a column of the second.

• There are N squared terms to compute in the output matrix

• Real data requires one multiply and one add for a total of 2 N cubed operations

• Complex data requires 4 multiplies and 4 adds (due to the real and imaginary parts and their

cross products) for a total of 8 N cubed operations.

• While this matrix is being computed, suppose we want to transfer in 2 more blocks, say a

new [A] and [B]. The number of words that must be transferred is 2N squared for real data

and 4N squared for complex data.

• Therefore each word transferred is used N (or 2 N) times.

• This property is used at all levels of matrix computation, from registers to cache to memory

and to disk.

• If N is 10,000 then the disk transfer rate can be 10,000 times slower than the compute rate.

• The time required to perform the multiply is the number of floating point operations divided

by the computational rate.

• The time required for the transfer is the number of bytes transferred divided by the disk

transfer rate.

• The ratio of compute time to transfer time determines if the process is limited by

computation or disk transfers.

• Ratios greater than 1 indicate a compute bound process. The ratio gives the additional

amount of performance which can be added to the system without changing memory or

disks.

• Ratios less than 1 indicate an I/O bound process. The reciprocal of the ratio gives the amount

the disk transfer rate must be increased or the block size must be increased.

• Note that the memory must be increased by a factor of 4 to provide an increase in block size

of a factor of 2.

fmslib.com

Benchmark Machines

Machine CPUs GPUs
C

Flops/Sec.

D

Bytes/Sec

.

N

Block Size

CPU to IO

Ratio

Laptop 1x4 AVX 0 55 E9 88 E6 7280 2.87

Z800 1x4 SSE4 2 641 E9 425 E6 17024 2.82

Server 2x6 SSE4 8 2,386 E9 265 E6 21504 0.60

Benchmark Movies

Z800 http://www.fmslib.com/z800-100k/Performance-0001.html

Server http://www.fmslib.com/sm06-100k/Performance-0001.html

• A HP Pavilion dv7-4295 laptop having a single 2.0 GHz quad core Sandy Bridge processor, 8

GBytes of memory and a single disk was tested. For this machine the CPU to IO ratio was

2.87. The sustained performance was 55 Gflops, which demonstrated that the disk can keep

up with the processor. In addition this test also demonstrated that the Sandy Bridge

processors perform 8 floating point operations per clock cycle.

• The next machine was a Z800 workstation having a single 5530 quad core processor, 2

NVIDIA C2050 GPUs, 48 GBytes of memory and 4 SAS 15K disks. For this machine the

CPU to IO ratio was 2.82, which indicates that the performance will not be limited by disk

IO. A movie showing the solution of 100,000 complex equations and 15,000 solution vectors

is located at http://www.fmslib.com/z800-100k/Performance-0001.html

• The third machine was a server having two 6-core processors, 8 NVIDIA M2050 GPUs, 48

GBytes of memory and 3 SATA 7.2K disks. For this machine the CPU to IO ratio was 0.6,

indicating that time will be spent waiting for IO. This can easily be fixed by adding more

memory and/or more faster disks. A movie showing the solution of 100,000 complex

equations and 15,000 solution vectors is located at http://www.fmslib.com/sm06-

100k/Performance-0001.html

fmslib.com

Further Information

http://www.fmslib.com

For further information, visit Multipath’s WEB site at

