
HP-CAST
Dr. Ronald Young

November 10, 2012

GPU Acceleration of
BIG Matrix Algebra

FMSlib.com - Solves BIG Problems

Scientific community

Fluid Mechanics

Structural Analysis

Heat Transfer

Electromagnetics

Diffusion (reservoir simulation)

Acoustics

Circuit design

Economic modeling

NVIDIA Tesla users

A(N,N) is a model of the plane

Why do you want to
solve a BIG problem?

Discretized mesh model

More is Better

N becomes Larger

[A]{X} = {B}

640x480 1920x1080

FMSlib.com - Solves BIG Problems

Memory Slow Processors

Limit N

What limits the size of the problem (N)?

FMSlib.com - Solves BIG Problems

A11X1 + A12X2 + A13X3 + … + A1nXn = B1

A21X1 + A22X2 + A23X3 + … + A2nXn = B2

…

An1X1 + An2X2 + An3X3 + … + AnnXn = Bn

A11 A12 A13 … A1n

A21 A22 A23 … A2n

… … … … …

An1 An2 An3 … Ann

X1

X2

…

Xn

B1

B2

…

Bn

=

Coefficient

Matrix
Right-hand

Side Vector Solution

Vector

1. Storage for matrix A(N,N) increases as N2

o Limited by size of memory or disk

2. Computing time for [A]{X}={B} increases as N3

o Limited by processing power (CPUs, GPUs)

3. Cost/Performance

o $/Gflop increases with performance

As N becomes large, it encounters three

obstacles:

Goal: Make N as big as possible economically

Storage Storage

Time

Cost

Storage

Time

FMSlib.com - Solves BIG Problems

0

10

20

30

40

50

60

70

80

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000

C
o

m
p

u
te

 T
im

e
 (

S
e

c.
)

Problem Size, N

$$$

$$$

$$$

$$$

$$$

$$$

$$$

$$$

$$$

$$$

$$$

$$$

$$$

$$$

$$$

$$$

$$$

Storage: first stop-server memory
Gbytes N Minutes

1x16=16 31,623 4

Gbytes N Minutes

1x16=16 31,623 4

2x16=32 44,721 10

Gbytes N Minutes

1x16=16 31,623 4

2x16=32 44,721 10

4x16=64 63,245 28

W
a

ll

Gbytes N Minutes

1x16=16 31,623 4

2x16=32 44,721 10

4x16=64 63,245 28

8x16=128 89,442 80

Storage

Time

Cost

FMSlib.com - Solves BIG Problems

Three Ways to Overcome the Storage Obstacle:
1. Use larger very expensive memory modules

2. Build a cluster

A. Replicate server

B. Reprogram in MPI

C. Scales storage (N2) and compute (N3) equally

D. Only extends the “Wall”

3. Store data on disk

A. Inexpensive (100 x less than memory)

B. Practically unlimited size; easily added

C. Independent scaling of storage and compute

D. No “Wall”

Gbytes N Minutes GPU $

16x16=256 126,491 255 12X

32x16=512 178,885 636 40X

Storage

Time

Cost

FMSlib.com - Solves BIG Problems

Reuse to the
Rescue

IO/Compute Ratio, X=(T*R)/C

• If X > 1, Compute bound:
o Increase processing power by X

• If X < 1, I/O bound:
1. Increase disk transfer rate to C/R

2. Increase reuse to C/T by increasing

memory

3. Some combination of (1) and (2)

Real Complex

Compute [C]=∑[Ai][Bi] (Flops) 2N3 8N3

Read next [Ai] and [Bi] (Words) 2N2 4N2

“Reuse” R N 2N

C=Compute rate

 (Flops)

T* R

Are Disks Fast Enough? Yes, because of Reuse

T=Transfer rate

 (Words/Sec.)

Storage

Time

Cost

FMSlib.com - Solves BIG Problems

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1,000

C
o

m
p

u
te

 R
at

e
 (

Tf
lo

p
s)

Memory Required for Reuse Buffer

16 GB

R=25,820

32 GB

64 GB

R=51,640

128 GB

R=73,030

I/O Bound

Compute Bound

256 GB

R=103,280

Disk Transfer Rate (MBytes/Sec.)

Storage

Time

Cost

FMSlib.com - Solves BIG Problems

0

1

2

3

4

5

6

7

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000

Computing Time: What can these GPUs really DO?

Problem Size, N

No GPUs

200 Gflops

7 days

D
a

y
s

N = 350,000

W
a

ll

N = 89,442

8 GPUs
3300 Gflops

11 hrs.
2.5 hrs

Storage

Time

Cost

New
science!

2 GPUs

800 Gflops

1.75 days

FMSlib.com - Solves BIG Problems

Cost Performance (Processing Efficiency)

$0

$10

$20

$30

$40

$50

$60

$70

$80

$90

$100

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000

Problem Size, N

C
o

st
/P

er
fo

rm
an

ce
 (

$
/G

fl
o

p
)

$

$7

Storage

Time

Cost

No GPUs

1 GPU

8 GPUs
2 GPUs

FMSlib.com - Solves BIG Problems

HP Z820 Workstation

Reuse=(2)(25088)=50,176; T=(700)/8=87.5 MW/Sec.

I/O Compute Ratio = (50,176)(87.5)/798000 = 5.50

(4) SAS

15K

600GB

disks (2) C2075 GPUs

(2) E5-2667 CPUs

128 GB Memory

25:20:16

N=300,000

Watch matrix

being solved

in real time.

Compare CPU

and GPU

Performance

798 Gflops

I/O Wait < 5%

HP SL 4U Server

(2) Intel E5 2660 processors

I/O Wait < 5%

3.315 Tflops

28:36:47

(8) Tesla Fermi M2090 GPU’s

(7)x1TB=7 TB

7.2K SATA Disks,

 (637MB/Sec.)

N=500,000

I/O Compute Ratio = (53248)(79.6)/3315000 = 1.28

HP SL270 4U Server
HP Confidential

PCIe X16 Gen3

(16)x16=256 GBytes memory

108 Gbytes used by FMS

FMSlib.com - Solves BIG Problems

0

1

2

3

4

5

6

7

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000

Matrix HP

Problem Size, N

D
a

y
s

N = 350,000

W
a

ll

N = 89,442

8 GPUs
3300 Gflops

HP Benchmarks

 Z820

 SL 8-GPU

HP Benchmarks

No GPUs

200 Gflops

2 GPUs

800 Gflops

FMSlib.com - Solves BIG Problems

3. Solve [A]{X} = {B}

2. Assemble [A] and {B}

1. Form [a] and {b} for each piece

• Rows or Columns

• Blocks

• Finite Elements

Start

Converged?

4. Process solution {X}

Application Program Interface: Memory-Based

End Yes No

Disk-Based

Store [A],
{X}, {B}

2. Assemble [A] and {B}

• Rows or Columns

• Blocks

• Finite Elements

3. Solve [A]{X} = {B}

FMSlib

Why FMSlib?
1. FMSlib is based on an in-depth

understanding of mathematics and
computer architecture, incorporating

no shortcuts. Performance is
obtained by exploiting all hardware
features.

2. FMSlib was the first linear algebra
library, initially introduced in 1982 by
Floating Point Systems to accelerate
their array processors.

3. FMSlib includes only those routines
that have proven commercial value.

FMSlib Solvers
PROFILE SOLVER:

Accounts for the sparsity

of matrix [A] on an

equation by equation basis

BLOCK SOLVER:

Divides the matrix [A]

into square blocks,

accounting for sparsity

on a block by block basis

SLAB SOLVER: Extends

the functionality of the

Block Solver by providing

full column partial

pivoting for full

nonsymmetric matrices.

Data Type
8-byte Real
16-byte Complex

Matrix
Symmetry

Symmetric
Nonsymmetric
Hermitian

Direct
No iteration
Predictable
performance

Dense
No indirect addressing
Maximum GPU
performance

Out-of-
core

Option to use disk for
data storage

Multiple
Solutions

Efficiently solves for
multiple {X}

GPUs Plug-and-play

OS Linux, Windows

FMSlib.com - Solves BIG Problems

FMSlib Performance History 1978-present

34 Million times faster!

133 Million times cheaper!

Machine Year Flops N* $/Gflop

DEC VAX 1978 97,000 1,465 2,000,000,000

FPS 164 1982 11,000,000 7,090 50,000,000

FPS 164-MAX 1985 341,000,000 22,272 2,500,000

* Factor full complex nonsymmetric matrix in 1 day

(8) NVIDIA GPUs 2012 3,300,000,000,000 474,627 15

FMSlib.com - Solves BIG Problems

Demonstrate your GPU Performance
with

1. Demonstrate new computer technology

2. Benchmark performance studies (CPUs, GPUs, Memory, Disks)

3. Assess existing machine performance (your laptop to GPU server).

Free download from FMSlib .com

Powered by FMSlib

FMSlib.com - Solves BIG Problems

Conclusions
1. Larger matrices result from more detailed analysis.

2. Matrix Algebra scales differently than most applications:

• Storage as N2

• Processing as N3

3. High Reuse in matrix algebra allows efficient use of multilevel memory systems:

• Inexpensive disks can be used for storage

• Overlapped transfers from Disk → Memory → (GPUs) → Cache → Registers

• Processors continuously operate at near peak speed

4. GPUs have an ideal architecture for matrix algebra:

• High performance

• Lower capital and operational costs

5. [Matrix]Warrior may be used for

• Machine benchmarking

• Demonstrating performance

• Machine burn in

FMSlib.com - Solves BIG Problems

It’s a new day in scientific computing

X86

Solves BIGGER Problems

 Solve [A]{X} = {B}

3 + Tflops Sustained!, Low $/Gflop

FMSlib.com

High $/Gflop

[Mat r ix] Warr ior

